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J .  P H Y S .  A ( P R O C .  PHYS.  S O C . ) ,  1968, S E R .  2 ,  V O L .  1.  P R I N T E D  I N  G R E A T  B R I T A I N  

Brownian motion of electrons 
J. H. WILLIAMSOXt 
Department of Physics, University of British Columbia, Vancouver, Canada 
MS. received 5th February 1968, in recised fo rm 27th M a y  1968 

Abstract. The concepts of Chandrasekhar are used to derive a new theory which 
describes the random motion of a particle less massive than the fluid particles. A 
low-density Lorentz gas with isotropic scattering is used as a model. Probability 
densities are calculated and the mean square displacement is found to agree with 
Ornstein’s result, 

(x2> = 2D,k1( /3 t -1  +e-J t )  

only if all particles have the same collision rate. An expression is given for the 
displacement in a magnetic field, which is valid at all times; in the limit of t + a, 
the usual diffusion constant is obtained. The theory is applied to the scattering of 
radiation by electrons in a plasma, and the spectra are found to be narrowed by 
collisions, although features such as the peaks at the plasma frequency or multiples 
of the cyclotron frequency are broadened. The collision term used in the linearized 
Boltzmann equation is more realistic than the widely used BGK term, and the 
collision rate can vary with speed. 

1. Introduction 
The theory of Brownian motion has often been used to describe the motion of particles 

in a plasma. However, it has been applied indiscriminately to cover particles with any mass, 
whatever the mechanism for their interaction with the plasma. I n  this paper the concepts 
of Chandrasekhar (1943) are used to derive a new theory of Brownian motion. It provides 
an accurate description of the motion of electrons when collisions with neutral atoms are 
dominant. The  basic theory is developed in $ 2  and the probability density for the dis- 
placement of an electron is obtained in the following section. Section 4 compares the mean 
square displacement with the result obtained classically. Xext, the theory is generalized to 
include a magnetic field. In  § 6 the theory is applied to the scattering of electro- 
magnetic radiation by the electrons in a plasma, and then the modification of the spectra by 
collective effects is calculated. Section 8 compares the spectra, probability densities and 
mean square displacements with the results of other theories, for example the Fokker- 
Planck equation and the usual form of the Boltzmann equation. Finally, the application of 
this theory to real plasmas and to other systems is discussed. 

Classically (Einstein 1956) a particle, which is much more massive than the fluid 
molecules, undergoes Brownian motion because of the cumulative effect of many small 
impacts from the molecules. Over time intervals longer than the mean collision time the 
motion is described by the Langevin equation (Chandrasekhar 1943) 

dv 
-- = -pU+A( t ) .  
dt 

Here the first term on the right represents the dynamical friction with the fluid, and the 
second a stochastic acceleration which is assumed to have a Gaussian distribution. The  
mean square displacement (Uhlenbeck and Ornstein 1930) in the x direction is 

(x2> = 2DP-l(Pt- 1 +e-Pt) ( 2 )  
where the diffusion constant D is KTImP for a fluid temperature T and a particle of mass m. 
When Pt % 1, Einstein’s result (x2) = 2Dt is valid and the probability density of the 
net displacement, W ( x ;  t ) ,  is governed by the diffusion equation. 

An electron in a gas also travels in an irregular manner. Here, contrary to the usual 
Brownian motion, each impact has a profound effect on the velocity of the electron, al- 
though the transfer of energy between the electron and the gas is slow. The  essential 
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features of the electronic Brownian motion are maintained if we neglect this transfer 
entirely. Thus inelastic collisions are ignored and the gas atoms are assumed to have 
infinite mass. An electron is usually deviated through an angle of less than 90” when it 
bounces off a gas atom. However, outside the region around 0” the asymmetry is usually 
small, and isotropic scattering is a good approximation if the momentum transfer collision 
rate y (Allis 1956) is used in all calculations. The  theory developed below can handle any 
functional dependence of the collision rate on the electron speed c, but a constant mean free 
path h will usually be adopted, i.e. y(c) = cjh. This is appropriate for the model we are 
using-the motion of a particle in a Lorentz gas of hard spheres. Measurements (Adler 
and Margenau 1950) of the electrical conductivity of a weakly ionized plasma have shown 
that constant h is a more realistic assumption than is constant y. 

2. Brownian motion of an electron 
Because the scattering is isotropic, the velocities before and after a collision are inde- 

pendent, except that the speed must remain constant. Hence, for an electron with speed c, 
the x component of velocity, v, has a rectangular probability distribution : 

f ( w [ c )  = i c - l f o r  ]vi Q c 

= 0 otherwise. 

The  probability that the electron travels a net distance x in a time t is denoted by W(x; t ) .  
The electron has a chance e-Yt of moving to x without colliding on the way; hence W has a 
contribution given by 

WO(%; t )  dx = e-Ytf(vIc) dv 

subject to x = ut. The  probability that the electron reaches x’ and then makes its first 
collision during dt’ is Wo(x’; t ’ )y  dt’, and that it then continues so as to reach x at t is 
W(x-x‘;  t-t’). These probabilities are multiplied and then integrated over x’ and t’ to 
yield a recursive equation for W: 

W,(X’; t ’ )W(x-x’ ;  t - t ’ )  dx’dt’. JX W(x; t )  = Wo(x; t )  + y 

If we introduce the spectrum 
CO 

S(k, 0) = 1,“ dt 1 dx exp(ikx- iwt)W(x; t )  (3) 
- m  

with a similar definition for So and use the convolution theorem, the integral equation 
yields 

S(k, w )  = So+ ysos 
= So( l  - ySo)- l  (4) 

where 

So(k, w )  = s,“ dt dv exp(ikvt- i w t - y t ) f ( v / c )  
- c c  

= i.- 1 In (--- y+iw-ick 
y + iw  + ick 2ck 

Figure 1 shows the real part of S as a function of w for various values of A. The imaginary 
part is an antisymmetric function of real w .  
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In  works on classical Brownian theory the original velocity is often left as a parameter in 
the expression for the probability density. Here this velocity has an ephemeral existence, 
but the transform of the density W(x; tlv,) can be calculated easily. The  first path has a 

w/c k 

Figure 1. Spectra S(k, w )  for monoenergetic electrons with mean free path h given by 
Xk = 1, 5 ,  100 and a. 

probability e- y t  of lasting for a time t ,  by which time the electron will have reached vot, so 
that the transform of Wo(x; tlv,) is 

W 1; dt  1 dx exp( ikx - iwt - yt)S(x - o,t) = ( y  + i o  - ikvo)-I. 
- m  

All the succeeding paths are independent of E , ,  so that the complete spectrum is 

S(k, wive) = (y+iw-ikz. ,)-l( l-ySo)-l .  (6) 
To obtain the spectrum for a group of electrons with a Maxwellian velocity distribution, 

an average must be taken over c. I n  obtaining the curves shown in figure 2 a constant mean 

2 1 

c.2 I C  I m r  k 

Figure 2. Spectra S(k, w )  for electrons with a Maxwellian velocity distribution and 
constant mean free path X given by hk = 1, 5 and to. 
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free path was assumed. Thus the averaged spectrum is 

S(k, w) = c S(k ,  w) fo(c)  dc 

where 

and 
C 

y (c )  = -. 
h 

3. Probability density 
The inverse Laplace transform of the spectrum S(k, w) is 

~ ( k ,  t )  = ( 2 r ) - l  1 S(k ,  w) eiWt dw 

where the integration is along a line parallel to the real axis and below all the singularities of 
the integrand. There is a branch cut between w = iy+ck and w = iy-ck, and for real k 
there may be a pole on the positive imaginary axis, so that the integration can be made along 
the real axis. Contour integration around these singularities did not give any simplification, 
so the integral was computed numerically. When k is real, x is a real symmetric function of 
k and it can be expressed as 

TJ 50 

x ( k , t )  = r - l /  R e ( S ) c ~ s w t d w - n - ~  [ Im(S)s inwtdw.  (8) 
0 W O  

The first integral here is easy to compute, but the second is difficult because Im(S) is O(w-l) 
when w is large. However, we note that the Laplace transformation in equation (3) is 
equivalent to a Fourier transformation if W and x are defined to be zero when t < 0. 
Adding x ( k ,  - t )  = 0 to equation (8) gives 

x ( k ,  t )  = 277-1 1,' Re(S) cos ut  dw. 

Finally, the probability density is found using 

(9) 

For a group of electrons having a Maxwellian velocity distribution and constant mean 
free path the function x is replaced by 

0: 

f ( k ,  t )  = 2r -1  I,̂  dw 1 dc Re(S) cos w t f o ( c ) .  
0 

Changing the variable w to &, 

where 
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Z(ft) = fO(c) cos(ftc) dc 

t2t2KT - $f2t2K T 
S 

= ( I  - -,---I exp (--m-). 
Figure 3 shows the resulting probability density m ( x ;  t )  for three values of t. 

XI A 

Figure 3. Probability density W(x; t )  for electrons with a Maxwellian velocity distribu- 
tion and constant mean free path when h-lc,,,t = 0.5, 1 and 2.  The broken lines 

show Gaussian distributions having the same variances. 

I n  addition to the one-dimensional density W(x; t ) ,  there is the three-dimensional form 
p( r ;  t). This is not merely a product of three W functions because the displacements in 
different directions are correlated. However, the motion is spherically symmetric, so that p 
depends only on the magnitude of r .  A spherical shell of unit surface density at Y = yo contains 

t 

rih 
Figure 4. Spherical probability density 4nr2p(r; t )  for electrons with a Maxwellian 
velocity distribution and constant mean free path when h-lc,,,t = 0.5, 1 and 2 .  

4nrO2 electrons and contributes a rectangular distribution to W(x; t) ,  that is 

W(x; t )  = 2nr0 if 1x1 < yo. 
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Generalizing to any distribution p(r ;  t), the surface density of a shell will be p( r ;  t )  dr, so 
that 

n W  

W(x; t) = 1 2nrp(r ;  t )  dr. (14) 
J X  

Inverting this equation, we have 

= ( 2 ~ ~ r ) - ~  x(k, t )k  sin Kr dk. s," 
This distribution contains a 6 function at r = ct, consisting of those electrons which have not 
yet collided with a gas atom; those which do collide are left behind this expanding spherical 
front. The  function F(r; t )  is defined in a similar way and the probability density 47ir2j of 
the net displacement Y in a time t is shown in figure 4. 

4. Mean square displacement 
Although all the moments of W(x; t) can be computed numerically, an analytic 

expression for the mean value of x2 as a function of time can be obtained from S. Differenti- 
ating equation (3) for S twice with respect to K ,  we have 

2 = 11 - x2 exp(ikx- iwt) W(x;t) dx dt. 
ak2 

If we set k = 0 and invert the Laplace transformation, 

= - (x2). 
Here we have 

a2s + 1 a2so  

(1 - yS0)' 2k2 ' 

As k approaches zero, So and its derivatives take limiting values: 

So = (y+iw-ikv)-If(vjc)dv +(y+iw)-l  i 

The velocity distribution is symmetric, so that ( v )  and hence ( x ( t ) )  are zero. For the 
rectangular distribution ( v 2 )  = $2; thus 

<x2) = - 

This integral can be calculated by completing the contour in the upper half-plane, en- 
circling the simple pole at w = iy and the double pole at w = 0. The result is 

(2 )  = 3 ~ ~ y - ~ ( y t -  1 + (17) 
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For a Maxwellian distribution of electrons we have { c z )  = 3 ~ T / m .  If there is a con- 
stant mean free path, 

ct 
h 

{A?) = / $A2 (- - 1 + exp (?)I fo(c) dc 

= $h2{&Tt - 1 + (1 + 2q2) exp (q2)  erfc (7)) (18) 
where the average collision rate 7 = ( 8 ~ T / n m ) ~ ’ ~ h - ~ ,  q = &9izYt and the complementary 
error function 

erfc(q) = 2n--1/2 exp( -y2)  dy. s, 
If y is constant, 

where the diffusion constant D = KT/my. These expressions both tend towards 
(2 )  = (v2)t2 when t is small and towards {x2) = 2Dt when t is large, although, 
for equation (18), D takes the value 8~T/3n-m?: If the density of gas atoms is adjusted to 
equalize these two diffusion constants, then at intermediate times the predictions for {xz) 
never differ by more than 5%.  Thus the dependence of y on speed has very little effect on 
the mean square displacement. 

In  comparing these results with that obtained by Ornstein for classical Brownian 
motion (equation (Z)), the parameters /3 and y may be equated as each represents the 
average rate of loss of ordered momentum. Thus equations (2) and (19) are found to be 
identical, even though in classical Brownian motion remanence of velocity is virtually 
complete, whereas here each impact completely destroys the previous velocity. The  
reason why equation (18) is not in exact agreement is that the electronic Brownian motion 
theory is not restricted by the requirement that /3 be independent of velocity. For example, 
when h is constant /3 = c/X, and c is obviously correlated with [ v [ .  

5. Brownian motion in a magnetic field 
When a magnetic field B is present, the paths of the electrons between collisions are 

helices about the field lines. If the angle between k and B is 8, then the k component of the 
displacement during one free path is 

x = (cz-vz)l~zwc-l sin 8{sin(wct+$)- sin$}+vt cos 8. 

Here v is the component of velocity parallel to B, the cyclotron frequency is wc = eB/m 
and $ is the azimuthal angle describing the initial direction of motion. The  transform of 
this displacement is 

So = 1; d t /Ym d c I 0  zexp{izsin(wct+t,b)-izsin$+ikctcos O-iwt-yt}f(v[c) 

{xz) = ZDy-l(yt- 1 + (19) 

2n d$ 

where x = k(c2 - v2)112wc-1 sin 8. Using the Bessel function expansion formula 

m 

exp(iz sin $) = 2 J,(z) exp(ipt,b) 
p = - m  

the integrand becomes 

2 J,(z)J,,(x) exp{ipw,t + i(p -p’)t,b + ikvt cos 8 - iwt - yt}.  
PP’ 

The  integral over $ is zero unless p = p’. Performing the t integration yields 

S,(k, w )  = 2 I--- JP2(Zlf (44 
, y + iw - ipwc - ikv cos 0’  
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This expression can be evaluated numerically and the spectrum S obtained using 
equation (4). The spectrum exhibits peaks at the multiples of the cyclotron frequency as 
long as y is not too large or 0 too small. Figure 5 shows a few examples. 

olck 
0 0.5 

d C k  

Figure 5 .  Spectra S(k, w )  for monoenergetic electrons in a magnetic field which is 
perpendicular to the wave vector k. The values of hk and w,/ck are respectively 

40, 0.25 (A); 8, 0.25 (B); 4, 0.25 (C); 40, 0.125 (D); 40, 0 (E). 

The  mean square displacement in a magnetic field is calculated as in the previous section. 
The algebra is tedious, so that only the essential stages will be indicated below. The  angle 0 
is taken to be 4.r because the components of (x2) parallel and perpendicular to B can be 
calculated separately and compounded by Pythagoras's rule. Most of the Bessel functions 
and their first and second derivatives tend to zero with k. The exceptions are 

Jo2 -f 1 
d2J02 
---+-l 
dz2 

d2J,12 
dz2 

+A. ___ 

Hence the limiting values of So and its derivatives are 

So -+ ( y  + iw)-' 

82So 
+&?wc-2(g(y+ iw- ioc)-I-  ( y +  iw)-l ++(y+ iw +iwc)- l} ,  

8k2 
The integrand for ( 2 )  has simple poles at o = f w,+iy and a double pole at w = 0. 
The result of the contour integration is 

- e-Ytcos w,t)-2yw,e-Ytsin w,t ___________ 
(Y2  + wc2)2 

The value of (x2) for a Maxwellian distribution of electrons with constant collision rate 
is obtained by replacing Qc2 by KTjm in equation (21). The total mean square displacement 
for large t in the plane perpendicular to B agrees with the well-known result (Allis 1956) 
2D,t, where - -  
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If the collision frequency is low enough, then {x') displays oscillations instead of in- 
creasing monotonically with time (see figure 6). For a fixed value of act, choosing y equal 
to oc provides the quickest possible diffusion. The  curves are plotted to display this 
feature. On the other hand, for a fixed value of yt ,  the mean square displacement is greatest 

wet 

Figure 6. Mean square displacement of electrons perpendicular to a magnetic field. 
The  ratios of the collision rate to the cyclotron frequency are 0.01, 0.1, 1 and 10. 

when the magnetic field is turned off. When the electrons move with constant mean free 
path, integration of equation (21) does not yield a simple result, except when t is large. 
The  motion is then characterized by 

D, = gh"pt{l-i-i2erEi(-i)) (23 ) 

where [ = o:h2m/2~T  and the exponential integral 

y - l  ey dy. 1: 3c. 

Ei( - () = 

6. Scattering of electromagnetic radiation 
A free electron performing Brownian motion in a gas will scatter electromagnetic 

radiation incident upon it (Thomson scattering). If the incident plane wave has angular 
frequency L2 and wave vector KO, the amplitude of the spherical wave scattered through an 
angle B with wave vector K ,  is proportional to 

A(k,  t )  = cos{!& + k . X(t) +4) (24) 

where k = K ,  -KO ; hence k N 2K0 sin $6. At time t = 0, x is defined to be zero, so that 
the phase + contains a contribution depending on the initial position of the electron. The  
incident monochromatic wave is phase-modulated by movement of the scattering electron, 
and if there are no collisions a Doppler shift occurs, given by 

A(k,  t )  = cos{ (Q+k .  v)t++}. 

The  autocorrelation function for a group of non-interacting electrons is given, in the 
general case, by an ensemble average (Rice 1964): 

C(K, t )  = ( A ( k ,  t ) A ( k ,  0)) 

= 4 (cos(Qt + k x )  + cos(Qnt + k x +  24)). 
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The second term here is zero because 4 is randomly distributed. Thus 

C(k,  t )  = 3 !” P(x;  t )  cos(Qt+Kx) dx. 

The  power spectrum for a wave observed at frequency Q + w is (6) : 
m 

P(k,  w) = 4 1 C(k, t )  cos(!&+ ut) dt. 

If we ignore the cross term between positive and negative frequencies, which is valid if 
0 

i-2 % w,  
m 

P(k,  U )  = 1,“ dt dxm(x; t )  cos(wt-kx) 
- m  

= Re{s(k, w)). ( 2 5 )  
Figures 1, 2 and 5 show power spectra for the scattered radiation, and it is observed 

that, in the limit of X -+ CO, the electron velocity distribution leads to Doppler broadening 
of the incident spectral line. When collisions occur, the broadening is reduced (Fejer 1960) 
because the Doppler effect depends on the average velocity over a finite time interval and 
collisions hinder the motion of the electrons. In  atomic physics, collisions broaden the lines 
emitted by radiating atoms because the impacts cause abrupt random phase changes in the 
wave. Thus there is no correlation between the signals emitted before and after any 
collision and the reduced correlation time implies that the spectral line is broadened. On 
the other hand, when radiation is scattered by electrons, the phase of the scattered wave 
cannot change discontinuously because this would imply an instantaneous change of the 
electron’s position. There is a 50% chance that the velocity of the electron changes sign 
at the collision, hence reversing the direction in which the phase modulation is changing 
and increasing the correlation time. In  the limit of X -+ 0, the electron can hardly move, 
so that the correlation time becomes very long. The  major effect of the collisions is this 
spectral narrowing, although the extreme wings of the spectrum are widened slightly. If 
the electron bounces back from an atom, the wave has a kink which corresponds to a 
modulating component at a high frequency. 

7. Spectra with collective effects 
The dressed test particle concept (Rosenbluth and Rostoker 1962) can be used to 

account for the binary correlations between electrons caused by their Coulomb interactions. 
Large-angle Coloumb scattering is ignored and it is assumed that the field particles are 
sufficiently numerous for each to suffer only a small perturbation. Thus one electron is 
singled out as the test particle to move unperturbed through the plasma, perturbing the 
continuous distribution of field particles as it goes. These perturbations scatter light 
coherently with that scattered by the test particle itself. Each electron in turn is con- 
sidered as the test particle and the contributions from each are summed incoherently. The 
Dower sDectrum can be written as I 

Re( s) 
P(k ,  w) = - 

lW 
where ~ ( k ,  w )  is the dielectric constant of the plasma. Collisions of test particles with gas 
atoms have been dealt with in the earlier sections; the purpose here is to calculate E, which 
describes the effect of field particle collisions. 

The interaction between electrons and ions also result in collective effects but, because 
of the slow movement of the ions, only the scattering with very small w is affected. This 
region will not be considered in this paper as the collisions between ions and gas atoms are 
not adequately described by either classical Brownian motion or the Lorentz gas theory 
presented here. Large-angle electron-electron and all electron-ion collisions are also ignored 
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for the same reason. Thus the transition to acoustic waves at high pressures (Sitenko and 
Gurin 1966) is not obtained with this theory. 

In  setting up the linearized Boltzmann equation 

- e  

we express the deviation of the field particle distribution function from the equilibrium 
Maxwellian distributionf,(v) as an explicit function of speed,f,(x, t ,  U, c). This is because 
the collisions do not intermingle the classes of field particles with different values of c. Here 
ZI denotes the component of Y which is parallel to the wave vector k. All quantities are 
independent of the third component of v, so that this is not included in the arguments. 
The  collision term 

conserves particles in the proper way. Like the widely used term of Bhatnagar et aZ(l954, 
to be referred to as BGK) 

it assumes isotropic scattering and no remanence of velocity. However, the velocity after 
a collision belongs to a rectangular distribution rather than a physically unrealistic 
Maxwellian distribution. The  BGK term seems always to be used with constant y (although 
a slightly less restrictive assumption is possible), but here any dependence of y on c is 
allowed. 

The  acceleration term can change the speed of a particle, but we must evaluate the 
derivative at the given value of c: 

ifo - v m  - vm 
20 KT KT 
- - - --fo(v) = -f(.Ic)fo(c). 

Poisson’s equation for the potential when the test particle’s position is x ’ ( t )  is 

V2al = 4xe6{x-r’(t)3+4?ineeSf~ dv (30) 

where n, is the average density of electrons. Looking for solutions in the form of plane 
waves, we resolve 

p ( k ,  w )  = ( 2 ~ ) - ~ ( ^ J ^ S { ~ - x ’ ( t ) } e x p ( - i k .  x+iwt )dkdw 

with similar definitions for the transformsf,(k, w ,  U, c )  and @(k, U) .  The dielectric constant 
~ ( k ,  U )  is defined by 

(31) 
P 
- = p+ne  If; dv. 

The  equations (27) and (30) reduce to 

and 
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If we introduce the dimensionless parameter (Salpeter 1960) 

4rnee2 1 
t12 = ___ - _- 

KTk2 lD2k2 
- (34) 

where lD is the electronic Debye length and writing a = a2p/me, these equations yield 

( y + i w - i k .  v)fl = a i k .  v f ( ~ ‘ ~ ~ ) f ~ ( ~ ) + y f ( ’ i l l ~ ) J ’ f ~  dv‘. 

Therefore 
ik . vf(vIc) dv 
y + i o - i k .  v 

/ fl dv = a fo  (c) j 

Integration over the speed gives 

fl dv dc = a ( i w S -  1) 

hence 
P 2 p  
- =p+- - ( iwS- l )  
E E 

and finally 
E = 1 -t12(iwS- 1). (35) 

In  the limit of y -+ 0, 
s +so 
S ~ ~ j f o ( c ) f ( c ~ c ) ( y + i w - i k . v ) - l d o d c  = ~ f 0 ( v ) ( y + i w - i k . v ) - l d v  

E - t 1 - t 1 2 S i k . v f o ( v ) ( y + i w - i k . v ) - 1 d v  
and 

in agreement with the results of Salpeter (1960), Rosenbluth and Rostoker (1962) and others. 
Figure 7 shows the power spectra for various values of Xk and t1. If a is high enough for a 

w l c r m , k  dC, , ,k  
Figure 7 .  Laser scattering spectra P(k ,  w )  from a plasma with collective effects 

characterized by a = 1 and 2 and hk = 1, 5 and a;. 
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distinct satellite near the electron plasma frequency up, collisions broaden this peak and 
shift it towards the centre frequency. Simple theories which merely add a collisional 
damping term to that caused by Landau damping do not predict this shift. 

It can readily be seen that deduction of plasma parameters like ne and Te from the 
observed spectra can be invalidated by collisions between electrons and neutral particles. 
A fortiori the same comment applies to sophisticated attempts (Brown and Rose 1966) to 
deduce the whole velocity distribution from the results of scattering experiments. 

8. Comparison with other work 
Fejer (1960) used classical Brownian theory in the diffusion limit and found that the 

asymptotic form of the spectrum was Lorentzian with width Dk2. A similar but not identical 
result can be obtained here by approximating equation (5). When the collision rate is very 
much larger than both w and ck, the logarithms can be expanded to give 

therefore 

Thus the central part of the spectrum for monoenergetic electrons is approximately 
Lorentzian with width +c2k2/y .  Although at first sight it appears that averaging over the 
speed c would give Fejer's result, this is not correct. s(k, w )  can maintain the Lorentzian 
character only in the unlikely event of y being proportional to c2. Fejer's result corresponds 
to averaging merely the width, not the spectrum itself. 

The  first calculations (Hagfors 1961, Renau et al. 1961), which include both collective 
effects and collisions, used as collision term in the Boltzmann equation 

This means that the collisions distribute the electrons uniformly in real space as well as 
in velocity space, so that each perturbation fl is annihilated as soon as the electron carrying 
it collides with another particle. The  results of this assumption are obtained from the 
collisionless theory by replacing w by w-iy. A more detailed criticism of this work is 
given by Dougherty and Farley (1963), who themselves use the BGK term (equation (29)). 
However, this is also unsatisfactory as it distributes the electrons in energy space, in addition 
t o  merely changing the direction of motion. In  the notation of this paper they define S as 
So(l -yS0)-l, instead of calculating S and then applying the average over c. Dougherty 
and Farley give only a brief description of the effect of collisions on the satellite peak (their 
main interest is in the ion peak). They state that the general effect is to replace w by 
a - i y ,  but in fact their theory predicts a shift towards w = 0, as does the electronic 
Brownian motion theory developed here. Similar results have been obtained by Lewis and 
Keller (1962) and Taylor and Comisar (1963). 

Grewal (1964a) has studied the effect of collisions in a plasma using the Fokker- 
Planck equation, which Chandrasekhar (1943) derived for classical Brownian motion. The 
collision term in the linearized equation is 

K T  7 ($) =Bi ; . (v+--8 a fi. 

CO11 
(37) 

H e  used this expression for both ions and electrons and obtained spectral narrowing if 
sc < 1. When a is large he calculated the form of the ion peak near w = 0, but stated that 
the satellite peak near wp is not described adequately by his theory. In  a later paper 
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(Grewal 1964 b) he compared his results with those of Dougherty and Farley (1963) and 
found that the probability densities only agree at large t ,  although for a Maxwellian 
distribution of velocities the discrepancies at earlier times are not large. However, his 
approximation for WFp(x; t )  when pt < 1 is incorrect. He assumes a Gaussian distribution 
with (x2) = (KT/m)tz(l +?&), while the exact expression is Gaussian with (x2} given by 
equation (2). (This result can be obtained from equation (171) of Chandrasekhar's (1943) 
paper by integrating over two components of the displacement and averaging over the 
initial velocity.) At Pt  = 0.5 his approximation is in error by more than the difference he 
shows between the FP and BGK results. The  exact expression is compared in figure 3 
with the density computed using the electronic Brownian motion theory for electrons 
having a constant mean free path. (The times for which the curves apply have been 
adjusted to give equal variances.) As can be seen, the electronic Brownian motion curves 
have slightly sharper peaks and longer tails than do pure Gaussian distributions. 

A further comparison between the theories is provided by the spectra scattered by a 
Maxwellian distribution of electrons (see figure 8). The BGK theory predicts a smooth 
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Figure 8. Spectra s(K, w )  for electrons with a Maxwellian velocity distribution, 
comparing the electronic Brownian motion (EBM) theory with other theories. The 

wave number K is h- l ,  crmsy-l or c~, ,$ -~ .  

profile, while the electronic Brownian motion spectra are more sharply peaked near w = 0. 
This occurs because the electrons are not all equivalent, but some diffuse more slowly than 
others, thereby giving more collisional narrowing of the spectra. This is particularly 
severe if y is constant because then the slowest electrons are condemned to make tiny steps 
which are much smaller than k - l .  The relaxation spectrum S,(K, w )  corresponds to the 
collision term given in equation (36). It also applies if each electron is absorbed at its 
first collision, other electrons being released elsewhere in the plasma to keep the density 
constant. This spectrum is very broad because there is no mechanism whereby the 
correlation time can be increased. The  Fokker-Planck spectrum was obtained by trans- 
forming WFp(x; t )  to give 

from which it is easily shown (Singwi and Sjolander 1960) that 
XFP(k, t ,  = exp(-&k2 ( X 2 ( t ) ) }  (38) 
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This is very similar to the BGK profile; in both cases every electron ranges over all possible 
speeds, and it is seen to be unimportant whether the speed changes abruptly or gradually. 
Which of these five theories gives the best description of the scattering of radiation by 
electrons will have to be determined by experiment, but in the meantime it should be borne 
in mind that the electronic Brownian motion theories assume the electron to be infinitely 
lighter rather tHan infinitely heavier than the gas atoms. 

Kurpnoglu (1962) has applied classical Brownian theory to the motion of an electron in 
a magnetic field with a uniform positive background. There is a fluctuating electric field 
and a dynamical friction interpreted as the ‘collision’ of the electron with the ‘oscillators’ of 
the electromagnetic field. Using a method similar to Chandrasekhar’s, he obtains a formal 
solution for W(r;  tit’,) which can be written out explicitly only if t is large. The  mean 
square displacements parallel and perpendicular to B then take their usual form (Allis 
1956). In  a later paper (Kursunoglu 1963) he generalizes his work to allow an anisotropic 
dynamical friction, but he does not relate this to the properties of the plasma in any way. 

Liboff (1966) has used classical Brownian theory to describe the motion of electrons in 
electric and magnetic fields. When E = B = 0, he finds that 

where D has its usual value KTImP. Because of the unknown term in l/Pt, this formula is 
useless unless Pt 1. It is therefore not surprising that “although the asymptotic formula 
agrees with that of previous investigators, there is disagreement for earlier times”. In  fact, 
not even the asymptotic formula is in agreement because, as Liboff shows elsewhere in his 
paper, in the limit of t -f CO his formula gives only half the displacement predicted by 
Einstein. This arises because he defines a time average 

nt  

(Y2} = t-1 J y 2 ( t ‘ )  dt‘ 
0 

whereas the conventional definition uses an ensemble average in accordance with the kind 
of experiments which are actually performed (Golant 1963). 

9. Application 
The electronic Brownian motion theory should be particularly useful in describing a 

helium plasma. Most collisions are elastic because of the high excitation and ionization 
potentials, and the mean free path is constant (Golden 1966) within 10% for an electron 
energy below 3 ev. For an arc at atmospheric pressure in thermal equilibrium (Drawin and 
Felenbok 1965) at 1 ev, using light from a ruby laser with scattering angle 3” or less, electron- 
atom collisions cause most of the broadening of the satellite peak. Large-angle Coulomb 
collisions (Boyd et al. 1966) are next in importance. The  plasmas which are used in 
magnetohydrodynamic studies are often seeded with alkali metals to increase the electron 
density at low temperatures. These metals furnish very large cross sections for electron 
collisions. The  satellite peak from a caesium plasma at & ev and a partial pressure of 0.01 atm 
observed at 10” is doubled in width by collisions. At 0.1 atm narrowing of the whole spec- 
trum would be severe because Ak = 1. 

The  BGK collision model has been applied by Nelkin and Ghatak (1964) to the 
scattering of slow neutrons by a liquid. Wittke and Dicke (1956) have observed collisional 
narrowing of the microwave Doppler absorption profile of hydrogen atoms caused by the 
buffering action of molecular hydrogen. They calculated the asymptotic form of the 
spectrum, finding the Lorentzian shape later obtained by Fejer (1960) for electrons in a 
plasma. I n  these and similar experiments the electronic Brownian motion theory will give 
a better description if the scattering or absorbing particle is lighter than the fluid particles. 
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10. Conclusion 
The theory of electronic Brownian motion describes the motion of a light particle in a 

fluid, by giving results such as probability densities and spectra. The description is at least 
as detailed as the classical results obtained for a heavy particle. For example, an exact 
expression is obtained for the mean square displacement in a magnetic field, whereas only 
the asymptotic value seems to have been derived using classical theory. 

The theory of laser scattering experiments is extended to allow for realistic collisions of 
the electrons with neutral atoms. The  observed spectra are altered drastically when these 
collisions are an important factor. There are qualitative differences between the predictions 
of the electronic Brownian motion theory on the one hand and the BGK and Fokker- 
Planck results on the other, which should allow an experimental choice to be made between 
the theories. 

Acknowledgments 

helpful discussions I have had with them. 

References 
ADLER, F. P., and MARGENAU, H., 1950, Phys. Rec., 79, 970. 
ALLIS, W. P., 1956, Handb. Phys., 21, 383 (Berlin: Springer-Verlag). 
BHATNAGAR, P. L., GROSS, E. P., and KROOK, M., 1954, Phys. Rev., 94, 511. 
BOYD, T. J. M., EVANS, D. E., and KATZEKSTEIN, J. ,  1966, Phys. Lett., 22, 589. 
BROWN, T. S., and ROSE, D. J. ,  1966, J.  App l .  Phys., 37, 2709. 
CHANDRASEKHAR, S., 1943, Rev. Mod. Phys., 15, 1 .t 
DOUGHERTY, J. P., and FARLEY, D. T., 1963, J .  Geophys. Res., 68, 5473. 
DRAWIN, H.-W., and FELENBOK, P., 1965, Data for Plasmas in Local Thevmodynamic Equilibrium 

EIKSTEIK, A., 1956, Inzestigations on the Theory of the Brownian .Movement (New York: Dover 

FEJER, J. A., 1960, Can. J .  Phys., 38, 1114. 
GOLANT, V. E . ,  1963, Soc. Phys.-Usp., 6, 161. 
GOLDEN, D. E,,  1966, Phys. Rev., 151, 48. 
GREWAL, M. S., 1964a, Phys. Rev., 134, A86. 
- 1964b, Phys. Rev., 136, A1181. 
HAGFORS, T., 1961, J .  Geophys. Res., 66, 1699. 
K U R ~ N O ~ L U ,  B., 1962, Ann. Phys., N.Y., 17, 259. 
- 
LEWIS, R. M., and KELLER, J. B., 1962, Phys. Fluids, 5, 1248. 
LIBOFF, R. L., 1966, Phys. Rev., 141, 222. 
WELKIN, M., and GHATAK, A., 1964, Phys. Rev., 135, A4. 
RENAU, J., CAMXITZ, H., and FLOOD, W., 1961, J. Geophys. Res., 66, 2703. 
RICE, S. O., 1944, Bell. Syst. Tech. J., 23, 282; 24, 46.t 
ROSENBLUTH, M. N., and ROSTOKER, N., 1962, Phys. Fluids, 5, 776. 
SALPETER, E. E., 1960, Phys. Rev., 120,1528. 
SINGWI, K. S., and SJBLAKDER, A., 1960, Phys. Rev., 119, 863. 
SITENKO, A. G., and GURIN, A. A., 1966, Sov. Phys.-JETP, 22, 1089. 
TAYLOR, E. C., and COMISAR, G. G., 1963, Phys. Rev., 132, 2379. 
UHLENBECK, G. E., and ORNSTEIK, L. S., 1930, Phys. Rev., 36, 823.t 
WAX, N., 1954, Selected Papers on Noise and Stochastic Pvocesses (New York: Dover Publications). 
WITTKE, J. P , and DICKE, R. H., 1956, Phys. Rev., 103, 620. 

I wish to thank Professor R. E. Burgess, Dr. F. L. Curzon and Dr. L. de Sobrino for the 

(Paris : Gauthier-Villars). 

Publications). 

1963, Phys. Rea., 132, 21. 

t The references Chandrasekhar (1943), Rice (1944) and Uhlenbeck and Ornstein (1930) are 
reprinted in the publication by Wax (1954). 


